Скачать Интерпретируемое машинное обучение на Python [Серг Масис]

Информация
Цена: 85 РУБ
Организатор: Kail Kail
Ссылки для скачивания
Kail
Kail
Организатор
Организатор
Регистрация
09.04.2020
Сообщения
419 238
Реакции
41 506
Монеты
1 191
Оплачено
0
Баллы
0
  • #SkladchinaVip
  • #1
Интерпретируемое машинное обучение на Python [Серг Масис]
Ссылка на картинку
Описание книги:
Книга поможет осознанно и эффективно работать с моделями машинного обучения. Дано введение в интерпретацию машинного обучения: раскрыты важность темы, ее ключевые понятия и проблемы. Рассмотрены методы интерпретации: модельно-агностические, якорные и контрфактические, для многопеременного прогнозирования, а также визуализации сверточных нейронных сетей. Раскрыты вопросы настройки на интерпретируемость: отбор и конструирование признаков, ослабление систематического смещения и причинно-следственный вывод, монотонные ограничения, настройка моделей и устойчивость к антагонизму. Показаны перспективы развития интерпретируемых моделей машинного обучения. Каждая глава книги включает подробные примеры исходного кода на языке Python.

На сайте издательства размещен архив с цветными иллюстрациями.

Научитесь создавать интерпретируемые высокопроизводительные модели на практических примерах из реальной жизни

Вы хотите научиться осознанно использовать машинное обучение на практике и снизить риски, связанные с плохими прогнозами?
Эта книга поможет вам эффективно работать с моделями машинного обучения. Каждая глава включает подробные примеры исходного кода на языке Python.

Первый раздел книги представляет собой руководство для начинающих по интерпретации результатов моделирования. В нем даны основные понятия и проблемы, показано значение машинного обучения в бизнесе. Рассмотрены модели белого ящика, черного ящика и стеклянного ящика, проведено их сравнение и предложены разумные компромиссы.

Во втором разделе описан широкий спектр методов интерпретации, известных также как методы объяснимого искусственного интеллекта, и их применение в случаях классификации, регрессии, табличных временных рядов, обработки изображений или текста. Результаты моделирования сопровождаются программными кодами и понятными примерами.

В третьем разделе рассмотрена настройка моделей и работа с обучающими данными. При этом интерпретируемость обеспечивается за счет снижения сложности, ослабления систематического смещения и повышения надежности. Рассмотрены новейшие методы выбора признаков, монотонных ограничений, состязательного переобучения и др.

К концу этой книги вы сможете лучше понимать модели машинного обучения и улучшать их за счет настройки интерпретируемости.

Вы изучите:
• Проблемы интерпретируемости в бизнесе
• Внутренне интерпретируемые модели, такие как линейные модели, деревья решений и на-ивный байесовский метод
• Интерпретацию моделей с помощью методов, не зависящих от модели
• Работу классификатора изображений
• Методы ослабления систематического смещения
• Методы защиты моделей от атак
• Применение монотонных ограничений для повышения безопасности моделей

Издательство: BHV
Год издания: 2022 г.
Объем: 384 стр.
Формат книги: pdf скан
Показать больше
 
Зарегистрируйтесь , чтобы посмотреть скрытый контент.
Поиск по тегу:
Теги
python интерпретируемое машинное обучение на python машинное обучение серг масис
Похожие складчины
Kail
Ответы
0
Просмотры
146
Kail
Kail
Kail
Ответы
0
Просмотры
203
Kail
Kail
Kail
Ответы
0
Просмотры
591
Kail
Kail
Показать больше складчин

Войдите или зарегистрируйтесь

Вы должны быть авторизованны для просмотра материала

Создать аккаунт

Создать учетную запись займет не больше минуты!

Войти

Уже зарегистрированы? Просто войдите.