Скачать [Udemy] Анализ временных рядов на Python [Центр digital-профессий ITtensive]

Информация
Цена: 65 РУБ
Организатор: Kail Kail
Ссылки для скачивания
Kail
Kail
Организатор
Организатор
Регистрация
09.04.2020
Сообщения
419 360
Реакции
41 512
Монеты
1 191
Оплачено
0
Баллы
0
  • #SkladchinaVip
  • #1
[Udemy] Анализ временных рядов на Python [Центр digital-профессий ITtensive]
Ссылка на картинку
Изучим регрессию, автокорреляция и рекуррентные нейросети для работы с временными рядами

Чему вы научитесь:
  • Теория временных рядов
  • Описание тенденций временного ряда
  • Прогнозирование временного ряда
  • Линейная и нелинейная регрессия
  • ARMA, ARIMA, SARIMA(X)
  • ADL и VAR
  • RNN, LSTM и GRU
  • BiLSTM
Требования:
  • Продвинутый Python
  • Основы машинного обучения
Это дополнительный курс программы Машинное обучение от ITtensive по анализу временных рядов.

В курсе разбираются 3 практических задачи:

1. Фьючерсы (цены) на зерно. Используя помесячные данные фьючерсов на зерно на лондонской бирже и применив ансамбль классических методов - бегущего среднего и полиномиальной регрессии - спрогнозируем цены в период сильной неопределенности.

Проект: прогноз фьючерсов на июнь 2022 года

2. Курсы валют. Изучим частотный и эконометрический подход для описание и прогнозирования курса доллара к рублю. Научимся раскладывать ряд на тренд, сезонность и вариацию и использовать модели ARMA, ARIMA, SARIMA, а также векторные (факторные) данные. Попробуем библиотеки Prophet и Auto-TS (автоматическое машинное обучение).

Проект: прогноз объема экспорта в декабре 2022 года

3. Активность потребителей электроэнергии. Разберемся с нейронными сетями и на основе достаточно стационарного ряда спрогнозируем его поведение, используя ансамбль из рекуррентных нейросетей.

Курсовой проект: прогноз курса акций, используя рекуррентные нейросети.

Теория по курсу включает:

  • Понятие и цели анализа временного ряда
  • Базовые техники - полиномиальные тренды и бегущее среднее
  • Модель Хольта-Винтерса и цвета шума
  • Авторегрессия и стационарность ряда
  • AR/MA, ARIMA, SARIMA(X)
  • ADL и VAR
  • Методологию анализа временных рядов и дрейф данных
  • Рекуррентные нейросети
  • LSTM, GRU, ConvLSTM и BiLSTM
  • В заключении посмотрим на модели WaveNet и трансформеры (механизмы внимания).
Для кого этот курс:
  • Инженеры по данным, работающие с временными сериями
  • Разработчики Python, прогнозирующие временные ряды
  • Ученые по данным, исследующие временные зависимости
Язык - русский
Показать больше
 
Зарегистрируйтесь , чтобы посмотреть скрытый контент.
Поиск по тегу:
Теги
udemy анализ временных рядов на python центр digital-профессий ittensive
Похожие складчины
Kail
Ответы
0
Просмотры
808
Kail
Kail
Kail
Ответы
0
Просмотры
341
Kail
Kail
Kail
Ответы
0
Просмотры
609
Kail
Kail
Kail
Ответы
0
Просмотры
410
Kail
Kail
Показать больше складчин

Войдите или зарегистрируйтесь

Вы должны быть авторизованны для просмотра материала

Создать аккаунт

Создать учетную запись займет не больше минуты!

Войти

Уже зарегистрированы? Просто войдите.